
Triakis Doc No.: WP_020610c 4 September 2003

Information contained herein is of a sensitive nature to the Triakis Corporation and/or the ELDEC Corporation. This information has been provided for the purpose
of evaluating the tools and services of the Triakis Corporation for applicability to projects in development or under consideration by the recipients’ organization.
Disclosure or use of any or all of the information contained herein is restricted to the individual to whom Triakis has given it, and his or her associates within the
immediate organization that the individual is employed. Disclosure outside of the organization may be made only with the written consent of the Triakis Corporation.

Using a Virtual System Simulation Environment for the
Development of Avionics Systems & Software

– A Triakis White Paper –

For further information, please contact: Ted Bennett or Paul Wennberg
Triakis Corporation Triakis Corporation
Tel: (425) 558-4241 Tel: (425) 861-3860
Fax: (425) 558-7650 Fax: (425) 558-7650
Ted.Bennett@triakis.com Paul.Wennberg@triakis.com

TRIAKIS CORPORATION

mailto:Ted.Bennett@triakis.com
mailto:Paul.Wennberg@triakis.com

Triakis Doc No.: WP_020610c 2 4 September 2003

TRIAKIS CORPORATION

Table of Contents

1 Introduction 3
1.1 Background 3
1.2 The Future of Aircraft and Avionics Systems Design, Validation and Verification 4

2 Avionics design and development with IcoSim 5
2.1 The Executable Specification 5

2.1.1 Bounded System or Subsystem 6
2.1.2 Plug-In Compatible 6
2.1.3 High-Level Language 6
2.1.4 Part-Oriented 7

2.2 The Detailed Executable 8
2.3 Software Verification 9

2.3.1 Module-Level 10
2.3.2 System-Level 11

2.4 Systems Integration 11
2.5 Acceptance Testing 11
2.6 Certification 12

2.6.1 Simulator 12
2.6.2 Avionics 12

2.7 Support 13

3 Summary 14

APPENDIX 16

Triakis Doc No.: WP_020610c 3 4 September 2003

TRIAKIS CORPORATION

1 INTRODUCTION

Triakis Corporation was founded in 1993 to offer companies greater efficiencies and improved quality in the

software (SW) development process through the application of IcoSim, a unique environment-simulation tool

developed by founder Paul Wennberg. Triakis finished its first complete avionics embedded system simulation in

1995 and has since created numerous additional simulations for commercial- and military-avionics development

efforts. A key factor in the success of IcoSim has been its ability to run the actual avionics software object code on

the simulated avionics CPU. This has enabled SW developers to achieve significantly higher levels of SW

validation and verification (V&V) than economically feasible using traditional methods of V&V.

Being a flexible, hierarchical tool, IcoSim has proven itself to be useful as a system-level concept development and

validation vehicle. With a demonstrable, validated system design modeled in IcoSim, all of the information and

detail necessary to describe the design has been captured. Forming the basis of detailed design, the system modules

developed in IcoSim unambiguously described module-level requirements for each of the components functioning

within the validated system. Through this realization, the Triakis team has developed its concept of concise,

accurate executable specifications derived directly from demonstrable, validated avionics system designs.

1.1 Background

Traditional methods of aircraft- and avionics-systems development employ arduous, expensive and time-consuming

processes relying with varying degrees on a variety of tools from manual analysis, algorithmic modeling and

simulation, and limited SW development to support concept proofing. Much of this process is performed using

disparate tools by a variety of people, often working in separate departments. As a result, the process of large,

complex system-development efforts is highly error prone – requiring major efforts to validate and verify overall

system architectures.

The problem is further complicated by the fact that once a system design has been validated, the design of each

individual module must be accurately captured in manually generated system specifications. This opens the door for

the introduction of additional errors both in the process of translating the design into an English-language format and

in the unintentional creation of ambiguities open to interpretation by the implementation team.

Upon completion of the module, typically the avionics line replaceable unit (LRU) development, its functionality

must be validated and verified that it conforms to the originally intended system design. Despite the best efforts of,

and time invested by development and verification teams, system and SW faults are frequently found late in the

development process and often during integration testing when they are most expensive to correct. It is not

uncommon for SW faults to remain undetected until after the end product has entered production and is in service

with a customer. As a general rule, a SW fault detected after a product has entered production and service is 10

Triakis Doc No.: WP_020610c 4 4 September 2003

TRIAKIS CORPORATION

times more costly to fix than when discovered during integration testing, and a hundred times more expensive to fix

than when detected during SW module testing.

As the complexity of systems and SW has grown, the time, manpower and equipment required for thorough V&V

testing has grown to represent a sizable portion of development budgets. It is precisely these increasingly

problematic methods of error-prone system specification and V&V that IcoSim was developed to address nearly 10

years ago.

In an effort to make significant improvements in quality, while reducing the costs of the avionics systems and

module development, the concept of executable specifications (ES’) has been widely discussed as possessing the

greatest potential for realizing these goals. An ES is intended to provide a standardized means of accurately and

unambiguously communicating subsystem behavior to another group so that the subsystem component is developed

exactly as the system designer specified and fits as intended into the overall system. Having the ability to make sure

that subsystem specifications are complete and accurate before being distributed can eliminate the costs and delays

inherent in the cycle of correcting problems due to specification errors and misinterpretations.

1.2 The Future of Aircraft and Avionics Systems Design, Validation and
Verification

The new paradigm in aircraft- and avionics–systems development incorporates a primary software tool enabling the

system architect to develop new system concepts, simulate them and validate them all on his PC. At this level,

communication protocols, message traffic, data throughput, display formats, human factors, control algorithms,

interaction between electrical/hydraulic/mechanical systems and all other system-related issues can be conceived,

tested and validated. Test scripts are created or derived from real-world recorded events to exercise the system in a

manner closely mirroring real-world scenarios.

In many cases, new system designs incorporate subsystem elements that have been developed and proven in

previous designs. Once a subsystem element has been proven, it becomes a standard library component available

for use in subsequent or collateral designs. Library components may also be used to form the basis for derivative

designs where modified or extended functionality is desired. Subsystem elements in the library, managed under a

configuration control system, are available for use by other parties involved not only in this development effort but

in the development of other systems incorporating like functionality.

Once a system design has been thoroughly tested and validated, each simulated subsystem element is used as an ES

for dissemination to the party responsible for developing the real-world counterpart (e.g. an avionics LRU). The ES

and any test scripts used specifically to validate its subsystem element form an unambiguous description of the part

functionality. Combined with a brief textual description and additional standard detail intentionally omitted from

the simulation (e.g. ARINC 600 4MCU package, connector type, spare ports, processor and memory-reserve

Triakis Doc No.: WP_020610c 5 4 September 2003

TRIAKIS CORPORATION

capacity, environmental specs, etc.), the full requirements are captured in a consistent, concise manner thereby

eliminating interpretation errors.

The component developer uses the same simulation environment as the systems designer and creates a design in the

simulator that matches the functionality of the ES. This part simulates the hardware and runs the actual executable

software object code that will run on the avionics subsystem being developed. When the test scripts developed

during the system-validation phase are used to exercise the detailed component simulation, the same results should

be produced as those generated using the original system-level module from which the ES was derived.

2 AVIONICS DESIGN AND DEVELOPMENT WITH ICOSIM

As with conventional approaches, an IcoSim-based design begins at the system-level with the group responsible for

the overall system design (usually the airplane or avionics manufacturer). The system designer creates a simulated

system comprising one or more interconnected executable specifications as system size and complexity dictates.

With a suite of functional system tests created or derived from real-world recorded events, the ES-based system

design is then tested and debugged until the system architecture is validated and functionally verified. Once

validated and verified, each individual ES forms an unambiguous functional representation of the system element

that it simulates.

The ES contains all of the functional requirements from which the embedded avionics SW will be developed. At

this point, a hardware (HW) architecture is selected that will support the functional and reserve-capacity

requirements of the module, as well as other requirements such as built-in test, environmental, etc. The selected

avionics HW design is then simulated in IcoSim, forming the basis of the detailed-executable (DE) module and

providing the platform upon which the embedded avionics SW is tested and verified. Key to the success of IcoSim

is the ability of the DE to be used in place of the ES in the system simulation. The embedded avionics SW

executing within the DE is tested in the actual environment in which the ES was developed, using the same suite of

functional system tests.

Executing the actual object code developed for the avionics HW, system simulations using the DE should perform

virtually the same as the ES it replaces. There is no better method presently available to verify avionics component

and system functional performance.

2.1 The Executable Specification

The ES concept has been applied to a variety of engineering disciplines such as ASIC design, SoC design, industrial

design and avionics design, but its definition will vary depending on the realm in which it is used. In the avionics

realm, an ES is a program that runs in a simulator, with the functional behavior of an avionics box or LRU at the

Triakis Doc No.: WP_020610c 6 4 September 2003

TRIAKIS CORPORATION

level of detail necessary to support interconnection with the rest of the system (other ES’) and perform all of its

functions. A truly useful ES must employ the following key elements:

 Unambiguously specify the functional performance of a bounded system or subsystem

 Be directly replaceable by a DE module (i.e. plug-in compatible)

 Define the functional behavioral model with a high-level language

 Function in a part-oriented, hierarchical simulator

The subparagraphs below examine these elements in greater detail.

2.1.1 Bounded System or Subsystem

The ES specifies the functional characteristics and performance of a physical piece of equipment that will be

designed and built. The ES, therefore, must be limited in scope to the boundary monitored or controlled by the

physical equipment, i.e., signals flow in and out of ES part boundaries, and information within the part should not

bypass its boundary to appear in other parts. Enforcing the boundary rules of a part is an important aspect of the

IcoSim© simulation allowing different implementations of a part to be plug-in replaceable. This mimics the physical

world where the same boundary discipline must be applied to the design of avionics LRU systems.

2.1.2 Plug-In Compatible

Of prime importance to the success of the IcoSim© ES concept is the ability of the DE to plug into the system

simulation in place of the ES. The DE part is simply a higher-fidelity implementation of the ES part executing real

avionics SW object code in a simulated HW environment that, together, have been designed to produce the ES

functional characteristics. This feature enables testing of the DE in the same system environment in which the ES

was developed, using the same test scripts and conditions, and interacting with other ES’ or DEs (as they are

developed), thereby verifying that the DE has been correctly designed. Because the DE runs real avionics SW in a

high-fidelity simulation of its host HW environment, the subtle variations in signal timing, data latency and response

times that occur in the actual HW are reproduced, and their impact on overall system performance can be assessed.

The ability to easily verify the module design within the IcoSim© system simulation virtually all but eliminates

system functionality related unit rejections at the integration verification & test phase of the development project.

2.1.3 High-Level Language

Another essential element of a successful ES tool is that it must support ease of ES component creation in a manner

that prevents ambiguities. The IcoSim© ES concept achieves this through the use of C++, a widely accepted high-

level programming language through which the behavior of both the ES and DE are encoded. As IcoSim©-based ES

projects progress, function and class libraries are created and expanded, thereby increasing the ease of use and

Triakis Doc No.: WP_020610c 7 4 September 2003

TRIAKIS CORPORATION

shortening the development time of subsequent projects. The object-oriented nature of IcoSim© is a natural

extension to that of Microsoft Visual C++, making the learning process a relatively easy step for those familiar with

C++ or C.

For the system designer not familiar with C++, it will be necessary to coordinate some parts of the system-design

activity with a programmer, or avail themselves of Triakis’ reasonably priced simulation support services. As ES

parts are developed and validated, they are added to the parts library for use in other simulations where needed.

Triakis has several avionics ES parts available such as a Digital Flight Data Acquisition Unit (DFDAU), a Digital

Flight Data Recorder (DFDR), etc. Triakis may be able to negotiate the licensing of additional avionics ES parts

such as a Proximity Switch Interface Unit (PSEU), Slat/Flap Control Computer, Power Control Panel, Power

Switching Unit, etc., whose development has been independently funded by avionics companies.

2.1.4 Part-Oriented

A viable ES tool must be part-oriented so components can be developed, validated and cataloged for reuse. This

eliminates wasted time recreating functions for new system designs that have already been developed and tested on

Figure 1: Example of IcoSim© Simulator Hierarchy

Abstraction
Legend Most DetailLeast DetailNot Simulated

The World

Target Aircraft

Other Aircraft

Terrain

GPS Satellite

Clouds/Rain

ILS/MLS xmtrs

VOR Beacons

Other Threats

DGPS

ATC Comm

Ground Control

Safety Systems

TCAS

EGPWS

Weather Radar

TCAS Front End

Weather Radar Front End

Terrain Elevation Data

Control Systems

Flight Management/
Control Computer

C
2

C
n

C
P
U

Thrust Management

Other Systems

Electrical Acft Power

Cockpit Displays

Misc. Sensors

Fuel System

Propulsion System

Control Surface Posns.

Landing Gear

Navigation Systems

GPS / ILS / MLS

Inertial Reference

Air Data Computer

Comm/Nav Radios

Hydraulics

Baro/Radio Alt

Actuators

Airports

ADS-B

Obstacles

Wind-shear
Obstacle, Airport Data

Comm/Nav Antennas

Other Aircraft

Other Aircraft

Telemetry

Triakis Doc No.: WP_020610c 8 4 September 2003

TRIAKIS CORPORATION

previous programs. IcoSim© was implemented with an object-oriented architecture for precisely this capability as

well as a host of other benefits conferred by this approach. All models are based on a class called “Sim,” and all

system parts created are of “Sim” type, thereby enforcing this part-oriented approach.

System implementations must be hierarchical to allow for the ability to cleanly contract or subcontract parts of

functional components as size, complexity and schedule demands necessitate. At the top of an IcoSim © system

simulation exists “The World,” a part consisting of subparts such as “Airplane,” “Weather,” “VORs,” “Terrain,”

“Airports,” etc. ad infinitum. The part “Airplane” might comprise subparts such as “Avionics,” “Landing Gear,”

“Control Surfaces,” “Engines,” “APU,” “Electrical Power,” “Fuel System,” “Hydraulic Power,” etc. Each of these

parts, in turn, might consist of zero to ‘n’ subparts as required to develop a simulation within which the system

under design will interact. For example, avionics parts may contain subparts implementing data-bus protocols (e.g.

ARINC 739, MIL STD 1553, TTP, ASCB, CSDB, etc.) at the system level, or microprocessors, memory, and other

integrated circuits and discrete components at the HW level. The diagram shown in Fig. 1 illustrates one possible

example of how a hierarchical simulation might be implemented for the purpose of developing a Flight

Management/Control Computer module.

2.2 The Detailed Executable

With all of the functional requirements validated, verified and unambiguously described within the ES, it then

becomes the basis from which the embedded avionics SW will be developed. A HW architecture is developed to

meet all of the functional and reserve capacity requirements of the avionics module (or LRU), as well as other

requirements such as built-in test, environmental, etc. While an avionics HW design is being created and simulated

in IcoSim, a SW design is created and much of the high-level protocol and algorithm code can be developed

concurrently with the development of the simulator. The HW simulation forms the core of the DE module and

provides the platform upon which the embedded avionics SW will be further developed, tested and verified.

In order for the DE to function within IcoSim as a SW-development environment, the target HW must be simulated

with sufficient fidelity to execute the SW object code being developed. The most challenging part of this task can

be implementing an accurate simulation of the microprocessor itself. Triakis has addressed much of this challenge

by developing simulations of many of the popular microprocessors in use today such as the Motorola PowerPC™,

MPC 555, MC68000, MC68332, DSP56005, DSP56302, DSP56309, and Intel 80196, 8051, 8096, 8097, 8798, et.

al. Triakis adds new parts to the IcoSim parts library as they are developed and makes them available through the

Triakis Web site. A more complete listing of IcoSim microprocessor and supporting interface parts that have been

developed can be found at www.triakis.com/CodedPartList.asp.

Once the simulation of the microprocessor is complete, simulation of the remainder of the design proceeds fairly

quickly with many of “glue” parts being available on the Web site listed above or in the IcoSim SW-developers kit.

www.triakis.com/CodedPartList.asp

Triakis Doc No.: WP_020610c 9 4 September 2003

TRIAKIS CORPORATION

The parts library includes some of the standard avionics interface chips such as the HI8282 ARINC 429 transceiver

and the Honeywell ASCB interface, for example. Also provided are a variety of standard and generic supporting

parts such as power supplies, A/D and D/A converters, logic gates, bus drivers and latches, RAM, ROM, diodes,

resistors, capacitors, inductors, transistors, relays, motors, etc. The completed HW-design simulation will feature

the same inputs and outputs as the ES, making it plug-in compatible with the system simulation in which the ES was

developed and verified. For the design team interested in developing in-house IcoSim expertise, Triakis offers

reasonably priced simulation support services for going on-site to develop a custom simulation together with the

design engineers.

With the HW-design simulation complete, each engineer developing the embedded avionics SW now has a complete

Virtual Systems Integration Lab (VSIL) available on his or her individual computer. IcoSim, acting as a virtual

microprocessor emulator, can be interfaced with an integrated debugger/editor (IDE) application to create a seamless

interactive simulator development environment with full symbolic debugging support. IcoSim has been tested and

used with the Green Hills IDE compiler as well as the Altium TASKING PowerPC™ EDE and CrossView Pro

debugger. SW modules are written and first tested on the simulated HW using built-in emulator and debugger

controls along with simulated oscilloscopes, waveform generators, etc. SW modules can then be tested using the

entire system, or selected elements of the system environment, with test scripts exercising the specific functions that

the module was designed to address. Engineers developing the SW need not wait for limited laboratory resources to

exercise and test their code.

Formal SW verification testing with structural coverage analysis is conducted next in support of certification. The

DE is complete when the embedded SW has been fully developed and verified, and passes all of the functional tests

used to validate the ES. At this point, the DE can be used interchangeably with the ES in the system simulation and

can be added, along with the ES, to the IcoSim parts library for use as required on other projects.

2.3 Software Verification

What makes IcoSim such an effective tool for SW development and verification is that the entire world in which

the target SW is being developed to interact with is simulated relatively easily from the highest system-abstraction

level to the minutest HW-component level as required. At the core of this IcoSim virtual world is a fully

functional simulation of the target HW into which the SW object code itself is loaded and executed, interacting with

the virtual world through simulated I/O HW exactly as it would in the real world. Verification at the CPU level is

ultimately the only way to ensure that the actual SW implementing the ES functionality is thoroughly tested with all

the attendant delays and constraints inherent in execution at the object-code level.

Triakis Doc No.: WP_020610c 10 4 September 2003

TRIAKIS CORPORATION

2.3.1 Module-Level

There is no better way to verify SW functionality and performance than to run it in the environment in which it was

designed to interact. Assembling a real-world avionics environment (i.e. simulation/integration laboratory) is very

expensive and creates a resource bottleneck as programmers vie for testing time. Using an IcoSim virtual world,

however, every programmer has access to a copy of the virtual avionics/aircraft/etc. environment at their desktop

computer in which to develop and test their SW.

As with the system-design verification level, test scripts remain an important part of the development process at the

SW-module level. SW modules are written to implement individual functional requirements specified in the ES and

then debugged and verified through the use of low- and later system-level test scripts to verify that the developed

subsystem-element functionality performs as dictated by the corresponding ES requirement.

The Triakis simulation environment uses C++ for creation of low-level component- or function-exercise commands

in support of SW-module development and debugging. The resulting C++ exercise commands are combined as

required into automatic tests that are linked with the simulation library and executed for debugging and verification.

In order to enhance the use of the virtual environment as a test vehicle, IcoSim comes with simulations of standard

laboratory test equipment such as oscilloscopes, signal generators, etc., along with the functional debugging

capability of microprocessor emulators. Access to every part and node in the system is available for determining the

state of any part, controlling part behavior, and controlling fault injection. The simulator also has control of time to

a very fine level and can stop the entire system at any point to gather and analyze data.

Verification to DO-178B level A requires documentation showing that each conditional jump instruction has been

fully exercised, that there is no unused code, etc. In support of reducing the testing and documentation effort to

meet this requirement, IcoSim can be configured for automatic generation of a variety of reports such as, but not

limited to the following:

 Modified Code Decision Coverage (MCDC)

 Path Coverage

 Timing and Throughput Analysis

 Reserve Throughput Analysis

 Memory Marker (identifies unused variables)

 Memory Reserve

 Subroutine Interrupt Trace

 Execution Trace

Iterative generation and analysis of these reports throughout the SW development process will ensure that the

software is well tested, and that the embedded-SW engineers and simulator-part writers have a matching

understanding of the system. When groups working on different aircraft subsystems run the simulator with their

Triakis Doc No.: WP_020610c 11 4 September 2003

TRIAKIS CORPORATION

combined work, overall system understanding is enhanced and system incompatibilities are quickly found and

remedied.

2.3.2 System-Level

Since SW-module development is performed in the same IcoSim VSIL environment designed to create the ES,

most of the system-level verification can be performed concurrently with module-level verification. As SW

modules are developed to implement specific functional requirements in the ES, they can generally be tested as a

partially functioning DE using existing test scripts created to exercise the related function at the ES level. In this

manner, the programmer verifies that his or her code actually implements the ES requirement correctly. When the

programmer is satisfied that the SW module functions properly, it may be passed to the systems engineer for further

evaluation. When all SW modules have been developed, integrated and tested together, the DE is complete and can

be used interchangeably with the ES in the system simulation.

Test scripts remain an important part of the development process to verify that each developed subsystem element

performs equivalently to the corresponding ES function. All test commands and scripts created in support of the DE

development are typically saved and used during final testing and for certification support documentation.

2.4 Systems Integration

Prior to receiving actual HW, the systems integrator receives the DE from the avionics developer responsible for

implementing the ES. The systems integrator then replaces the ES from which the DE was developed and runs the

system using the same set of functional system tests originally used to verify the system design. Passing this test is

proof that the avionics SW and HW design conforms to the functional requirements of the ES. Ultimately, the

systems integrator will run the simulation with all ES’ replaced with their corresponding DEs to verify that any

timing or other irregularities introduced in individual DEs do not create undesired consequences when interacting at

the system-integration level.

The ability to catch problems in a system simulation using DEs before avionics are delivered for testing results in a

great deal of time, effort and money saved by both systems integrator and avionics vendor. Further, product quality

is significantly improved and the certification effort is substantially reduced.

2.5 Acceptance Testing

With avionics-SW and simulated-HW functionality verified through DE testing by the systems integrator, all that

remains for final acceptance of the product is verifying that non-ES requirements have been met. This is

accomplished through traditional means of analysis and laboratory tests to verify that environmental, reserve-

capacity, mechanical, etc. requirements have been met. Finally, all system-avionics components should be

Triakis Doc No.: WP_020610c 12 4 September 2003

TRIAKIS CORPORATION

connected together in the systems integrator’s laboratory to verify that the end products perform the same as their

corresponding DEs. The few problems likely to be encountered at this stage should be minor, causing little or no

program impact.

2.6 Certification

2.6.1 Simulator

Certification of the simulator created with IcoSim is relatively straightforward since the simulation does not

actually generate any code used in the final avionics product. The FAA requires that all test tools used in support of

avionics development comply with the verification requirements of DO-178B §12.2 as a SW-verification test tool.

Tool qualification data must be provided per DO 178B §12.2.3.

The FAA also requires that the test procedure demonstrate all functionality of the part or system being certified. In

order to support this requirement, Triakis’ simulator-testing process compares real HW breadboards to the simulated

DE part behavior. Further, when a new CPU simulation is being developed, a full and complete suite of tests is used

to verify the CPU instruction set. Triakis typically performs the following tasks for verification of the simulators it

creates:

1. Simulator Configuration Control: The simulator SW is kept under configuration control during verification.

2. CPU Instruction Coverage: The CPU simulation is verified by exercising all instructions in all addressing

modes and boundary conditions.

3. CPU Interface Simulation: All CPU interfaces simulated are verified by automatic tests that exercises all

control and monitor functions for each simulated part.

4. Cross-Environment Demonstration: Selected software is demonstrated on both the simulator and a

representative target platform. For cross-environment demonstrations, Triakis is responsible for conducting the

test on the simulator, and Triakis’ customer is responsible for providing test data from the HW platform.

Analysis of cross-environmental demonstration test data is the joint responsibility between Triakis and its

customer.

5. Test-Data Configuration Control: All simulator test data is kept under strict configuration control and

archived by both Triakis and its customer.

6. Problem-Report Tracking: Triakis maintains a list of problems reported during the use of the simulator.

2.6.2 Avionics

While the documentation requirements may vary according to the level of avionics criticality, the following RTCA

DO178B documents would typically be required whether or not IcoSim was used in the development of the subject

Triakis Doc No.: WP_020610c 13 4 September 2003

TRIAKIS CORPORATION

avionics: SW Design Document (SDD), SW Requirements Document (SRD), SW Test Procedure (STP), SW Test

Report (STR) and the Version Description Document (VDD). The STP and STR rapidly become the focus of most

certification scrutiny because they document how and to what level of detail the avionics functionality was tested.

These two documents reveal in detail the thoroughness and rigor with which the IcoSim simulator has been able to

verify that every line of code has been tested and traced to a requirement in the ES. Virtually all the contents of

these documents are automatically generated by the simulator, thereby saving a great deal of time in the process of

preparing for the certification process.

Without exception, every avionics project (or subproject) on which Triakis has applied IcoSim for development

and V&V use has passed OEM acceptance testing with no functional-problem reports, and easily received FAA

certification at DO178B level B, C or D (depending on the project). IcoSim has been developed and used for V&V

to the requirements of DO178B criticality levels A, B, C, & D. Following is a sample list of avionics-development

project simulations for which Triakis has used IcoSim:

Avionics Systems Simulated to Date Using IcoSim:

 Hawker Horizon Landing Gear Control &

Indication System

 Crane Aerospace Weight & Balance System

 A380 Doors & Emergency Slide Sensing System

 B747-400 Proximity Switch Electronics Unit

(PSEU)

 Bombardier CL-604 PSEU

 Northrop B-2 Proximity Switch Logic Unit

 Boeing 717 (MD-95) P5 DSP (sub-unit of

PSEU)

 Boeing 757-300 P5 DSP (sub-unit of PSEU)

 Boeing 757-300 PSEU {Framework}

 Boeing 747X DC Standby-Power Power Module

 Lockheed C-5 Slat Proximity Controller {ES

sim}

 Embraer ERJ-170 Proximity Switch System

 R&D Simulator for Anti-Skid and Linear

Position-Sensing System

 ARINC 717 Digital Flight Data Acquisition Unit

(DFDAU) for the Boeing 737

 ARINC 615 Airborne Data Loader (ADL)

Protocol

NASA awarded Triakis a 1-year research grant in 2002, and a 3-year research grant in 2003 to study how its

simulation technologies may be used to improve software assurance.

2.7 Support

No matter how much research went into an avionics design, some changes will invariably need to be implemented

for reasons of enhancement, changes to the system environment or obsolescence in the years following entry into

service. This is another area where the simulator originally developed for the unit design can easily return big

dividends. Traditionally, HW- and SW-design changes would require the recreation of some or all of the original

laboratory-equipment setup – often at a substantial cost in material and labor. Through the use of the original

Triakis Doc No.: WP_020610c 14 4 September 2003

TRIAKIS CORPORATION

system simulation, functional changes can be made at the ES level and verified using the original or modified test

scripts.

Modifications can be simulated at the DE-level and fully tested in the original system environment to verify that

intended functionality has been implemented without negative side effects. With this capability, service bulletins

can be developed with the highest degree of quality assurance at a cost below those developed using standard

methodologies. Since IcoSim runs in the ubiquitous Windows® environment, it will be relatively easy through the

use of standard configuration and archive management procedures to support the 20 - 30 year typical product service

life.

3 SUMMARY

While it can be of great benefit in the development of embedded avionics software alone, IcoSim is most cost-

effective when used from the very beginning of a project where system-level functionality is being conceived and

developed. IcoSim is a most effective tool for avionics development because the entire world, from the highest

system level to the minutest hardware component, in which the target software is being developed to interact can be

simulated relatively easily. This virtual world contains a fully functional simulation of the target hardware on which

the embedded SW object code itself is loaded into simulated ROM, executed on the simulated CPU, and interacts

with the virtual world through simulated I/O hardware exactly as it would in the real world. V&V at the CPU level

is ultimately the only way to ensure that the actual SW implementing the subject functionality is thoroughly tested

with all the attendant delays and constraints inherent in execution at the object code level.

IcoSim’s ability to execute object code in it’s virtual target environment ensures that the final software is tested

regardless of how it was created – whether by traditional methods or by the use of code generators based on

behavioral models. Simulation of peripheral systems, sensors, and vehicle dynamics ensures that realistic data is

always being sent to and received from the SW under test as opposed to traditional methods of creating test pattern

sequences for SW stimulation. This unique combination of capabilities provides for unprecedented levels of SW

V&V confidence, and allows for the simulation of external system, sensor, and actuator faults as well as factors

external to the aircraft, for the express purpose of validating and verifying the response of the total system.

Simulation of high-level systems has been shown to reduce development costs and improve the testing, reliability

and quality of embedded software. When software can be run in the simulated target HW environment for which it

was developed and further, in the simulated aircraft itself, large gains in productivity can be realized. For instance:

 Each programmer uses a copy of the entire simulated target environment during development thereby reducing

the dependency upon laboratory hardware resources.

 By facilitating concurrent design of hardware and software, the use of IcoSim shortens project schedules and

reduces associated costs.

Triakis Doc No.: WP_020610c 15 4 September 2003

TRIAKIS CORPORATION

 Since IcoSim test scripts are based on a complete environment model, more realistic and thorough testing is

accomplished than can be achieved by traditional test methods. Applications developed with IcoSim are tested

to a high degree of confidence reducing the need for repeated testing in expensive system integration facilities.

 Modeling of hardware failure modes is easily accommodated with IcoSim, eliminating the need to build

custom hardware failure emulators.

 IcoSim’s method of performing system tests, software verification tests, and module-level tests promotes high

levels of consistency and re-use across multiple versions and products.

 Automatic path coverage analysis can direct the development of additional module-level tests to exercise

untested paths, insuring complete code test coverage. Exercising untested paths is accomplished by

commanding external device models to force the application code down those paths.

 The simulator can be used to prototype new software features and enhancements

 The IcoSim test environment is virtually immune to obsolescence issues that typify special hardware

equipment traditionally used for testing.

There is no better way to verify SW functionality and performance than to run it in the environment in which it was

designed to interact. However, assembling a real world avionics SIL is very expensive and creates a resource

bottleneck as programmers vie for testing time. Using an IcoSim virtual world, however, every programmer has

access to a copy of the VSIL at his or her individual computer in which to develop & test his or her SW. To

enhance the use of the VSIL as a test vehicle, IcoSim comes with simulations of standard laboratory test equipment

such as oscilloscopes, signal generators, and the functional capability of microprocessor emulators.

The IcoSim virtual world is hierarchical so objects at the lowest level of abstraction are interconnected to make

successively higher levels of functional objects until the required environment is complete. This modular approach

enables the highest possible levels of SW reuse for subsequent development projects.

Creating your host embedded avionics SW development environment with IcoSim following the Triakis ES model

ensures that:

1. Maximum quality is achieved by testing in the VSIL environment throughout the entire product development

and service life cycle.

2. Lowest overall development and support costs are realized through unprecedented fault detection coverage at

the least costly phase of the development process.

Triakis Doc No.: WP_020610c 16 4 September 2003

TRIAKIS CORPORATION

APPENDIX
The figure at the right is a screen shot of a simulated

747 DC Standby-Power Flight Deck Electrical System

Control Panel. This panel is simulated at the ES-level

and functions in its virtual aircraft environment as it

would in the real aircraft environment. When the

simulation is running, the knobs and pushbuttons are

operated with the mouse. The switches initiate their

corresponding actions and the lamps illuminate to

reflect their corresponding system status.

The figure below is a screen shot of another module that

runs within the same simulation that dynamically

represents, in schematic form, the DC standby-power

system circuitry onboard the 747 aircraft. While the

simulation is running, the dotted lines representing the

main power buses indicate both the magnitude and

direction of current flow in an animated fashion. Relay

contacts and circuit breaker states

can be observed dynamically

responding to manual input from the

control panel, or automatic input

from the DC Standby-Power

Control Computer (DC SPCC).

Not shown here are the DC SPCC

module which has been simulated at

the ES-level, as well as the APU,

Integrated Drive/Generators (IDGs),

etc. that have been simulated with

enough fidelity to realistically

represent the interface signals and

timing with which this system

interacts.

Simulated Boeing 747 DC Standby-Power
Cockpit Control Panel (courtesy of ELDEC Corp.)

Dynamic System-Level Simulation of Boeing 747
DC Standby-Power Control (courtesy of ELDEC Corp.)

Triakis Doc No.: WP_020610c 17 4 September 2003

TRIAKIS CORPORATION

The screenshot below depicts a simulation of the space shuttle robotic arm currently in development by Triakis to

enhance IcoSim© with Newtonian dynamics capability. The CPU chosen for use in this simulation is the MPC 555

PowerPC™.

Space Shuttle Robotic Arm Control Simulator

Triakis Doc No.: WP_020610c 18 4 September 2003

TRIAKIS CORPORATION

This is a screenshot from Triakis’ motor speed controller tutorial simulation. This simulation exemplifies how a DE

has been developed from an ES, and how the ES and DE can be used interchangeably in the simulation.

Tutorial Application DC Motor Controller with Memory Location Scope

Triakis Doc No.: WP_020610c 19 4 September 2003

TRIAKIS CORPORATION

This screen shot shows a hierarchical subset of the Boeing 757-300 from the Airplane level down to the CPU level.

The PowerPC™ registers are shown along with an oscilloscope monitor displaying periodic interrupt signals.

Triakis Custom Boeing 757 Sensing System Simulator (courtesy of ELDEC Corporation)

Triakis Doc No.: WP_020610c 20 4 September 2003

TRIAKIS CORPORATION

This is a screen shot displaying some diagnostic views of the ELDEC Corp. 757-300 PSEU simulator. This

simulator is running SW object code implementing an adaptive control filter algorithm on a simulation of the highly

complex Motorola DSP56302 digital signal processor. This simulator simultaneously runs object code on another

simulated microprocessor that serves as the primary controller for the PSEU.

Simulated Motorola DSP56302 running adaptive control filter algorithm SW
(courtesy of ELDEC Corp.)

