Jﬁﬁb -
7 \ b,

k]
“"." TRIAKIS CORPORATION

Using a Virtual System Simulation Environment for the
Development of Avionics Systems & Software

— A Triakis White Paper —

For further information, please contact: ~ Ted Bennett or Paul Wennberg

Triakis Corporation Triakis Corporation

Tel: (425) 558-4241 Tel: (425) 861-3860

Fax: (425) 558-7650 Fax: (425) 558-7650
Ted.Benneti@triakis.com Paul Wennberg@friakis.com

Information contained herein is of a sensitive nature to the Triakis Corporation and/or the ELDEC Corporation. This information has been provided for the purpose
of evaluating the tools and services of the Triakis Corporation for applicability to projects in development or under consideration by the recipients’ organization.
Disclosure or use of any or all of the information contained herein is restricted to the individual to whom Triakis has given it, and his or her associates within the
immediate organization that the individual is employed. Disclosure outside of the organization may be made only with the written consent of the Triakis Corporation.

e ———
4 September 2003

Triakis Doc No.: WP _020610c

mailto:Ted.Bennett@triakis.com
mailto:Paul.Wennberg@triakis.com

Table of Contents

1 Introduction

1.1
1.2

2 Avi
2.1

2.2
23

2.4
2.5
2.6

Background

The Future of Aircraft and Avionics Systems Design, Validation and Verification

onics design and development with IcoSim®

The Executable Specification
2.1.1 Bounded System or Subsystem
2.1.2 Plug-In Compatible
2.1.3 High-Level Language
2.1.4 Part-Oriented

The Detailed Executable

Software Verification
2.3.1 Module-Level
2.3.2 System-Level

Systems Integration

Acceptance Testing

Certification

2.6.1 Simulator
2.6.2 Avionics

2.7 Support
3 Summary
APPENDIX

~

—_ =
— O 0 0 a9 NN W W

—_ =
—_ =

—_—
NI NI S

—
w

14

16

Triakis Doc No.:

WP_020610c 2

4 September 2003

TRIAKIS CORPORATION

1 INTRODUCTION

Triakis Corporation was founded in 1993 to offer companies greater efficiencies and improved quality in the
software (SW) development process through the application of IcoSim®, a unique environment-simulation tool
developed by founder Paul Wennberg. Triakis finished its first complete avionics embedded system simulation in
1995 and has since created numerous additional simulations for commercial- and military-avionics development
efforts. A key factor in the success of IcoSim® has been its ability to run the actual avionics software object code on
the simulated avionics CPU. This has enabled SW developers to achieve significantly higher levels of SW

validation and verification (V&V) than economically feasible using traditional methods of V&V.

Being a flexible, hierarchical tool, IcoSim® has proven itself to be useful as a system-level concept development and
validation vehicle. With a demonstrable, validated system design modeled in IcoSim®, all of the information and
detail necessary to describe the design has been captured. Forming the basis of detailed design, the system modules
developed in IcoSim® unambiguously described module-level requirements for each of the components functioning
within the validated system. Through this realization, the Triakis team has developed its concept of concise,

accurate executable specifications derived directly from demonstrable, validated avionics system designs.

1.1 Background

Traditional methods of aircraft- and avionics-systems development employ arduous, expensive and time-consuming
processes relying with varying degrees on a variety of tools from manual analysis, algorithmic modeling and
simulation, and limited SW development to support concept proofing. Much of this process is performed using
disparate tools by a variety of people, often working in separate departments. As a result, the process of large,
complex system-development efforts is highly error prone — requiring major efforts to validate and verify overall

system architectures.

The problem is further complicated by the fact that once a system design has been validated, the design of each
individual module must be accurately captured in manually generated system specifications. This opens the door for
the introduction of additional errors both in the process of translating the design into an English-language format and

in the unintentional creation of ambiguities open to interpretation by the implementation team.

Upon completion of the module, typically the avionics line replaceable unit (LRU) development, its functionality
must be validated and verified that it conforms to the originally intended system design. Despite the best efforts of,
and time invested by development and verification teams, system and SW faults are frequently found late in the
development process and often during integration testing when they are most expensive to correct. It is not
uncommon for SW faults to remain undetected until after the end product has entered production and is in service

with a customer. As a general rule, a SW fault detected after a product has entered production and service is 10

|
Triakis Doc No.: WP _020610c 3 4 September 2003

TRIAKIS CORPORATION

times more costly to fix than when discovered during integration testing, and a hundred times more expensive to fix

than when detected during SW module testing.

As the complexity of systems and SW has grown, the time, manpower and equipment required for thorough V&V
testing has grown to represent a sizable portion of development budgets. It is precisely these increasingly
problematic methods of error-prone system specification and V&V that IcoSim® was developed to address nearly 10

years ago.

In an effort to make significant improvements in quality, while reducing the costs of the avionics systems and
module development, the concept of executable specifications (ES’) has been widely discussed as possessing the
greatest potential for realizing these goals. An ES is intended to provide a standardized means of accurately and
unambiguously communicating subsystem behavior to another group so that the subsystem component is developed
exactly as the system designer specified and fits as intended into the overall system. Having the ability to make sure
that subsystem specifications are complete and accurate before being distributed can eliminate the costs and delays

inherent in the cycle of correcting problems due to specification errors and misinterpretations.

1.2 The Future of Aircraft and Avionics Systems Design, Validation and
Verification

The new paradigm in aircraft- and avionics—systems development incorporates a primary software tool enabling the
system architect to develop new system concepts, simulate them and validate them all on his PC. At this level,
communication protocols, message traffic, data throughput, display formats, human factors, control algorithms,
interaction between electrical/hydraulic/mechanical systems and all other system-related issues can be conceived,
tested and validated. Test scripts are created or derived from real-world recorded events to exercise the system in a

manner closely mirroring real-world scenarios.

In many cases, new system designs incorporate subsystem elements that have been developed and proven in
previous designs. Once a subsystem element has been proven, it becomes a standard library component available
for use in subsequent or collateral designs. Library components may also be used to form the basis for derivative
designs where modified or extended functionality is desired. Subsystem elements in the library, managed under a
configuration control system, are available for use by other parties involved not only in this development effort but

in the development of other systems incorporating like functionality.

Once a system design has been thoroughly tested and validated, each simulated subsystem element is used as an ES
for dissemination to the party responsible for developing the real-world counterpart (e.g. an avionics LRU). The ES
and any test scripts used specifically to validate its subsystem element form an unambiguous description of the part
functionality. Combined with a brief textual description and additional standard detail intentionally omitted from

the simulation (e.g. ARINC 600 4MCU package, connector type, spare ports, processor and memory-reserve

|
Triakis Doc No.: WP _020610c 4 4 September 2003

capacity, environmental specs, etc.), the full requirements are captured in a consistent, concise manner thereby

eliminating interpretation errors.

The component developer uses the same simulation environment as the systems designer and creates a design in the
simulator that matches the functionality of the ES. This part simulates the hardware and runs the actual executable
software object code that will run on the avionics subsystem being developed. When the test scripts developed
during the system-validation phase are used to exercise the detailed component simulation, the same results should

be produced as those generated using the original system-level module from which the ES was derived.

2 AVIONICS DESIGN AND DEVELOPMENT WITH ICOSIM®

As with conventional approaches, an IcoSim®-based design begins at the system-level with the group responsible for
the overall system design (usually the airplane or avionics manufacturer). The system designer creates a simulated
system comprising one or more interconnected executable specifications as system size and complexity dictates.
With a suite of functional system tests created or derived from real-world recorded events, the ES-based system
design is then tested and debugged until the system architecture is validated and functionally verified. Once
validated and verified, each individual ES forms an unambiguous functional representation of the system element

that it simulates.

The ES contains all of the functional requirements from which the embedded avionics SW will be developed. At
this point, a hardware (HW) architecture is selected that will support the functional and reserve-capacity
requirements of the module, as well as other requirements such as built-in test, environmental, etc. The selected
avionics HW design is then simulated in IcoSim®, forming the basis of the detailed-executable (DE) module and
providing the platform upon which the embedded avionics SW is tested and verified. Key to the success of IcoSim®
is the ability of the DE to be used in place of the ES in the system simulation. The embedded avionics SW
executing within the DE is tested in the actual environment in which the ES was developed, using the same suite of

functional system tests.

Executing the actual object code developed for the avionics HW, system simulations using the DE should perform
virtually the same as the ES it replaces. There is no better method presently available to verify avionics component

and system functional performance.

2.1 The Executable Specification

The ES concept has been applied to a variety of engineering disciplines such as ASIC design, SoC design, industrial
design and avionics design, but its definition will vary depending on the realm in which it is used. In the avionics

realm, an ES is a program that runs in a simulator, with the functional behavior of an avionics box or LRU at the

|
Triakis Doc No.: WP _020610c 5 4 September 2003

TRIAKIS CORPORATION

TRIAKIS CORPORATION

level of detail necessary to support interconnection with the rest of the system (other ES”) and perform all of its

functions. A truly useful ES must employ the following key elements:

¢ Unambiguously specify the functional performance of a bounded system or subsystem
¢ Be directly replaceable by a DE module (i.e. plug-in compatible)
¢ Define the functional behavioral model with a high-level language

¢ Function in a part-oriented, hierarchical simulator

The subparagraphs below examine these elements in greater detail.

2.1.1 Bounded System or Subsystem

The ES specifies the functional characteristics and performance of a physical piece of equipment that will be
designed and built. The ES, therefore, must be limited in scope to the boundary monitored or controlled by the
physical equipment, i.e., signals flow in and out of ES part boundaries, and information within the part should not
bypass its boundary to appear in other parts. Enforcing the boundary rules of a part is an important aspect of the
IcoSim® simulation allowing different implementations of a part to be plug-in replaceable. This mimics the physical

world where the same boundary discipline must be applied to the design of avionics LRU systems.

2.1.2 Plug-In Compatible

Of prime importance to the success of the IcoSim® ES concept is the ability of the DE to plug into the system
simulation in place of the ES. The DE part is simply a higher-fidelity implementation of the ES part executing real
avionics SW object code in a simulated HW environment that, together, have been designed to produce the ES
functional characteristics. This feature enables testing of the DE in the same system environment in which the ES
was developed, using the same test scripts and conditions, and interacting with other ES’ or DEs (as they are
developed), thereby verifying that the DE has been correctly designed. Because the DE runs real avionics SW in a
high-fidelity simulation of its host HW environment, the subtle variations in signal timing, data latency and response

times that occur in the actual HW are reproduced, and their impact on overall system performance can be assessed.

The ability to easily verify the module design within the IcoSim® system simulation virtually all but eliminates

system functionality related unit rejections at the integration verification & test phase of the development project.

2.1.3 High-Level Language

Another essential element of a successful ES tool is that it must support ease of ES component creation in a manner
that prevents ambiguities. The IcoSim® ES concept achieves this through the use of C++, a widely accepted high-
level programming language through which the behavior of both the ES and DE are encoded. As IcoSim“-based ES

projects progress, function and class libraries are created and expanded, thereby increasing the ease of use and

|
Triakis Doc No.: WP _020610c 6 4 September 2003

TRIAKIS CORPORATION

shortening the development time of subsequent projects. The object-oriented nature of IcoSim® is a natural
extension to that of Microsoft Visual C++, making the learning process a relatively easy step for those familiar with

C++or C.

For the system designer not familiar with C++, it will be necessary to coordinate some parts of the system-design
activity with a programmer, or avail themselves of Triakis’ reasonably priced simulation support services. As ES
parts are developed and validated, they are added to the parts library for use in other simulations where needed.
Triakis has several avionics ES parts available such as a Digital Flight Data Acquisition Unit (DFDAU), a Digital
Flight Data Recorder (DFDR), etc. Triakis may be able to negotiate the licensing of additional avionics ES parts
such as a Proximity Switch Interface Unit (PSEU), Slat/Flap Control Computer, Power Control Panel, Power

Switching Unit, etc., whose development has been independently funded by avionics companies.

2.1.4 Part-Oriented

A viable ES tool must be part-oriented so components can be developed, validated and cataloged for reuse. This

eliminates wasted time recreating functions for new system designs that have already been developed and tested on

Figure 1: Example of IcoSim® Simulator Hierarchy

| Thrust Management |

| Air Data Computer |

The World
Target Aircraft
Safety Systems Navigation Systems
Control Systems | ADS-B ||| aes/is/ms |
| TCAS ||| CommMNay Radios |
| EGPWS | | Inertial Reference |
| Terrain Elevation Data |

Other Systems | Baro/Radio Alt

| Propulsion System | | Misc. Sensors

Control Surface Posns.

| Actuators |

Electrical Acft Power

Abstraction = X I
Legend E{S]muld@ | LeastDeail | % IIIH—MI _ Most Detail

|
Triakis Doc No.: WP _020610c 7 4 September 2003

TRIAKIS CORPORATION

previous programs. IcoSim® was implemented with an object-oriented architecture for precisely this capability as
well as a host of other benefits conferred by this approach. All models are based on a class called “Sim,” and all

system parts created are of “Sim” type, thereby enforcing this part-oriented approach.

System implementations must be hierarchical to allow for the ability to cleanly contract or subcontract parts of
functional components as size, complexity and schedule demands necessitate. At the top of an IcoSim® system
simulation exists “The World,” a part consisting of subparts such as “Airplane,” “Weather,” “VORs,” “Terrain,”
“Airports,” etc. ad infinitum. The part “Airplane” might comprise subparts such as “Avionics,” “Landing Gear,”
“Control Surfaces,” “Engines,” “APU,” “Electrical Power,” “Fuel System,” “Hydraulic Power,” etc. Each of these
parts, in turn, might consist of zero to ‘n’ subparts as required to develop a simulation within which the system
under design will interact. For example, avionics parts may contain subparts implementing data-bus protocols (e.g.
ARINC 739, MIL STD 1553, TTP, ASCB, CSDB, etc.) at the system level, or microprocessors, memory, and other
integrated circuits and discrete components at the HW level. The diagram shown in Fig. 1 illustrates one possible
example of how a hierarchical simulation might be implemented for the purpose of developing a Flight

Management/Control Computer module.

2.2 The Detailed Executable

With all of the functional requirements validated, verified and unambiguously described within the ES, it then
becomes the basis from which the embedded avionics SW will be developed. A HW architecture is developed to
meet all of the functional and reserve capacity requirements of the avionics module (or LRU), as well as other
requirements such as built-in test, environmental, etc. While an avionics HW design is being created and simulated
in IcoSim®, a SW design is created and much of the high-level protocol and algorithm code can be developed
concurrently with the development of the simulator. The HW simulation forms the core of the DE module and

provides the platform upon which the embedded avionics SW will be further developed, tested and verified.

In order for the DE to function within IcoSim® as a SW-development environment, the target HW must be simulated
with sufficient fidelity to execute the SW object code being developed. The most challenging part of this task can
be implementing an accurate simulation of the microprocessor itself. Triakis has addressed much of this challenge
by developing simulations of many of the popular microprocessors in use today such as the Motorola PowerPC™,
MPC 555, MC68000, MC68332, DSP56005, DSP56302, DSP56309, and Intel 80196, 8051, 8096, 8097, 8798, et.
al. Triakis adds new parts to the IcoSim® parts library as they are developed and makes them available through the

Triakis Web site. A more complete listing of IcoSim® microprocessor and supporting interface parts that have been

Once the simulation of the microprocessor is complete, simulation of the remainder of the design proceeds fairly

quickly with many of “glue” parts being available on the Web site listed above or in the IcoSim® SW-developers kit.

|
Triakis Doc No.: WP _020610c 8 4 September 2003

www.triakis.com/CodedPartList.asp

The parts library includes some of the standard avionics interface chips such as the HI8282 ARINC 429 transceiver
and the Honeywell ASCB interface, for example. Also provided are a variety of standard and generic supporting
parts such as power supplies, A/D and D/A converters, logic gates, bus drivers and latches, RAM, ROM, diodes,
resistors, capacitors, inductors, transistors, relays, motors, etc. The completed HW-design simulation will feature
the same inputs and outputs as the ES, making it plug-in compatible with the system simulation in which the ES was
developed and verified. For the design team interested in developing in-house IcoSim® expertise, Triakis offers
reasonably priced simulation support services for going on-site to develop a custom simulation together with the

design engineers.

With the HW-design simulation complete, each engineer developing the embedded avionics SW now has a complete
Virtual Systems Integration Lab (VSIL) available on his or her individual computer. IcoSim®, acting as a virtual
microprocessor emulator, can be interfaced with an integrated debugger/editor (IDE) application to create a seamless
interactive simulator development environment with full symbolic debugging support. IcoSim® has been tested and
used with the Green Hills IDE compiler as well as the Altium TASKING PowerPC™ EDE and CrossView Pro
debugger. SW modules are written and first tested on the simulated HW using built-in emulator and debugger
controls along with simulated oscilloscopes, waveform generators, etc. SW modules can then be tested using the
entire system, or selected elements of the system environment, with test scripts exercising the specific functions that
the module was designed to address. Engineers developing the SW need not wait for limited laboratory resources to

exercise and test their code.

Formal SW verification testing with structural coverage analysis is conducted next in support of certification. The
DE is complete when the embedded SW has been fully developed and verified, and passes all of the functional tests
used to validate the ES. At this point, the DE can be used interchangeably with the ES in the system simulation and

can be added, along with the ES, to the IcoSim® parts library for use as required on other projects.

2.3 Software Verification

What makes IcoSim® such an effective tool for SW development and verification is that the entire world in which
the target SW is being developed to interact with is simulated relatively easily from the highest system-abstraction
level to the minutest HW-component level as required. At the core of this IcoSim® virtual world is a fully
functional simulation of the target HW into which the SW object code itself is loaded and executed, interacting with
the virtual world through simulated I/O HW exactly as it would in the real world. Verification at the CPU level is
ultimately the only way to ensure that the actual SW implementing the ES functionality is thoroughly tested with all

the attendant delays and constraints inherent in execution at the object-code level.

|
Triakis Doc No.: WP _020610c 9 4 September 2003

TRIAKIS CORPORATION

p 7 i
l’l’;{\.\“‘

TRIAKIS CORPORATION

2.3.1 Module-Level

There is no better way to verify SW functionality and performance than to run it in the environment in which it was
designed to interact. Assembling a real-world avionics environment (i.e. simulation/integration laboratory) is very
expensive and creates a resource bottleneck as programmers vie for testing time. Using an IcoSim® virtual world,
however, every programmer has access to a copy of the virtual avionics/aircraft/etc. environment at their desktop

computer in which to develop and test their SW.

As with the system-design verification level, test scripts remain an important part of the development process at the
SW-module level. SW modules are written to implement individual functional requirements specified in the ES and
then debugged and verified through the use of low- and later system-level test scripts to verify that the developed

subsystem-element functionality performs as dictated by the corresponding ES requirement.

The Triakis simulation environment uses C++ for creation of low-level component- or function-exercise commands
in support of SW-module development and debugging. The resulting C++ exercise commands are combined as
required into automatic tests that are linked with the simulation library and executed for debugging and verification.
In order to enhance the use of the virtual environment as a test vehicle, IcoSim® comes with simulations of standard
laboratory test equipment such as oscilloscopes, signal generators, etc., along with the functional debugging
capability of microprocessor emulators. Access to every part and node in the system is available for determining the
state of any part, controlling part behavior, and controlling fault injection. The simulator also has control of time to

a very fine level and can stop the entire system at any point to gather and analyze data.

Verification to DO-178B level A requires documentation showing that each conditional jump instruction has been
fully exercised, that there is no unused code, etc. In support of reducing the testing and documentation effort to
meet this requirement, IcoSim® can be configured for automatic generation of a variety of reports such as, but not
limited to the following:

¢ Modified Code Decision Coverage (MCDC)

Path Coverage

Timing and Throughput Analysis

Reserve Throughput Analysis

Memory Marker (identifies unused variables)

Memory Reserve

Subroutine Interrupt Trace

* & & 6 o o o

Execution Trace

Iterative generation and analysis of these reports throughout the SW development process will ensure that the
software is well tested, and that the embedded-SW engineers and simulator-part writers have a matching

understanding of the system. When groups working on different aircraft subsystems run the simulator with their

|
Triakis Doc No.: WP _020610c 10 4 September 2003

TRIAKIS CORPORATION

combined work, overall system understanding is enhanced and system incompatibilities are quickly found and

remedied.

2.3.2 System-Level

Since SW-module development is performed in the same IcoSim® VSIL environment designed to create the ES,
most of the system-level verification can be performed concurrently with module-level verification. As SW
modules are developed to implement specific functional requirements in the ES, they can generally be tested as a
partially functioning DE using existing test scripts created to exercise the related function at the ES level. In this
manner, the programmer verifies that his or her code actually implements the ES requirement correctly. When the
programmer is satisfied that the SW module functions properly, it may be passed to the systems engineer for further
evaluation. When all SW modules have been developed, integrated and tested together, the DE is complete and can

be used interchangeably with the ES in the system simulation.

Test scripts remain an important part of the development process to verify that each developed subsystem element
performs equivalently to the corresponding ES function. All test commands and scripts created in support of the DE

development are typically saved and used during final testing and for certification support documentation.

2.4 Systems Integration

Prior to receiving actual HW, the systems integrator receives the DE from the avionics developer responsible for
implementing the ES. The systems integrator then replaces the ES from which the DE was developed and runs the
system using the same set of functional system tests originally used to verify the system design. Passing this test is
proof that the avionics SW and HW design conforms to the functional requirements of the ES. Ultimately, the
systems integrator will run the simulation with all ES’ replaced with their corresponding DEs to verify that any
timing or other irregularities introduced in individual DEs do not create undesired consequences when interacting at

the system-integration level.

The ability to catch problems in a system simulation using DEs before avionics are delivered for testing results in a
great deal of time, effort and money saved by both systems integrator and avionics vendor. Further, product quality

is significantly improved and the certification effort is substantially reduced.

2.5 Acceptance Testing

With avionics-SW and simulated-HW functionality verified through DE testing by the systems integrator, all that
remains for final acceptance of the product is verifying that non-ES requirements have been met. This is
accomplished through traditional means of analysis and laboratory tests to verify that environmental, reserve-

capacity, mechanical, etc. requirements have been met. Finally, all system-avionics components should be

|
Triakis Doc No.: WP _020610c 11 4 September 2003

TRIAKIS CORPORATION

connected together in the systems integrator’s laboratory to verify that the end products perform the same as their
corresponding DEs. The few problems likely to be encountered at this stage should be minor, causing little or no

program impact.

2.6 Certification

2.6.1 Simulator

Certification of the simulator created with IcoSim® is relatively straightforward since the simulation does not
actually generate any code used in the final avionics product. The FAA requires that all test tools used in support of
avionics development comply with the verification requirements of DO-178B §12.2 as a SW-verification test tool.

Tool qualification data must be provided per DO 178B §12.2.3.

The FAA also requires that the test procedure demonstrate all functionality of the part or system being certified. In
order to support this requirement, Triakis’ simulator-testing process compares real HW breadboards to the simulated
DE part behavior. Further, when a new CPU simulation is being developed, a full and complete suite of tests is used
to verify the CPU instruction set. Triakis typically performs the following tasks for verification of the simulators it

creates:
1. Simulator Configuration Control: The simulator SW is kept under configuration control during verification.

2. CPU Instruction Coverage: The CPU simulation is verified by exercising all instructions in all addressing

modes and boundary conditions.

3. CPU Interface Simulation: All CPU interfaces simulated are verified by automatic tests that exercises all

control and monitor functions for each simulated part.

4. Cross-Environment Demonstration: Selected software is demonstrated on both the simulator and a
representative target platform. For cross-environment demonstrations, Triakis is responsible for conducting the
test on the simulator, and Triakis’ customer is responsible for providing test data from the HW platform.
Analysis of cross-environmental demonstration test data is the joint responsibility between Triakis and its

customer.

5. Test-Data Configuration Control: All simulator test data is kept under strict configuration control and

archived by both Triakis and its customer.

6. Problem-Report Tracking: Triakis maintains a list of problems reported during the use of the simulator.

2.6.2 Avionics

While the documentation requirements may vary according to the level of avionics criticality, the following RTCA

DO178B documents would typically be required whether or not IcoSim® was used in the development of the subject

|
Triakis Doc No.: WP _020610c 12 4 September 2003

TRIAKIS CORPORATION

avionics: SW Design Document (SDD), SW Requirements Document (SRD), SW Test Procedure (STP), SW Test
Report (STR) and the Version Description Document (VDD). The STP and STR rapidly become the focus of most
certification scrutiny because they document how and to what level of detail the avionics functionality was tested.
These two documents reveal in detail the thoroughness and rigor with which the IcoSim® simulator has been able to
verify that every line of code has been tested and traced to a requirement in the ES. Virtually all the contents of
these documents are automatically generated by the simulator, thereby saving a great deal of time in the process of

preparing for the certification process.

Without exception, every avionics project (or subproject) on which Triakis has applied IcoSim® for development
and V&V use has passed OEM acceptance testing with no functional-problem reports, and easily received FAA
certification at DO178B level B, C or D (depending on the project). IcoSim® has been developed and used for V&V
to the requirements of DO178B criticality levels A, B, C, & D. Following is a sample list of avionics-development

project simulations for which Triakis has used IcoSim®:

Avionics Systems Simulated to Date Using IcoSim®:

e Hawker Horizon Landing Gear Control & Boeing 757-300 PSEU {Framework}
Boeing 747X DC Standby-Power Power Module

Lockheed C-5 Slat Proximity Controller {ES

Indication System

Crane Aerospace Weight & Balance System

A380 Doors & Emergency Slide Sensing System sim}

B747-400 Proximity Switch Electronics Unit Embraer ERJ-170 Proximity Switch System
(PSEU) R&D Simulator for Anti-Skid and Linear
Bombardier CL-604 PSEU Position-Sensing System
ARINC 717 Digital Flight Data Acquisition Unit

Northrop B-2 Proximity Switch Logic Unit

e Boeing 717 (MD-95) P5 DSP (sub-unit of (DFDAU) for the Boeing 737
PSEU) e ARINC 615 Airborne Data Loader (ADL)
e Boeing 757-300 P5 DSP (sub-unit of PSEU) Protocol

NASA awarded Triakis a 1-year research grant in 2002, and a 3-year research grant in 2003 to study how its

simulation technologies may be used to improve software assurance.

2.7 Support

No matter how much research went into an avionics design, some changes will invariably need to be implemented
for reasons of enhancement, changes to the system environment or obsolescence in the years following entry into
service. This is another area where the simulator originally developed for the unit design can easily return big
dividends. Traditionally, HW- and SW-design changes would require the recreation of some or all of the original

laboratory-equipment setup — often at a substantial cost in material and labor. Through the use of the original

|
Triakis Doc No.: WP _020610c 13 4 September 2003

system simulation, functional changes can be made at the ES level and verified using the original or modified test

scripts.

Modifications can be simulated at the DE-level and fully tested in the original system environment to verify that
intended functionality has been implemented without negative side effects. With this capability, service bulletins
can be developed with the highest degree of quality assurance at a cost below those developed using standard
methodologies. Since IcoSim® runs in the ubiquitous Windows" environment, it will be relatively easy through the
use of standard configuration and archive management procedures to support the 20 - 30 year typical product service

life.

3 SUMMARY

While it can be of great benefit in the development of embedded avionics software alone, IcoSim® is most cost-
effective when used from the very beginning of a project where system-level functionality is being conceived and
developed. IcoSim® is a most effective tool for avionics development because the entire world, from the highest
system level to the minutest hardware component, in which the target software is being developed to interact can be
simulated relatively easily. This virtual world contains a fully functional simulation of the target hardware on which
the embedded SW object code itself is loaded into simulated ROM, executed on the simulated CPU, and interacts
with the virtual world through simulated I/O hardware exactly as it would in the real world. V&V at the CPU level
is ultimately the only way to ensure that the actual SW implementing the subject functionality is thoroughly tested

with all the attendant delays and constraints inherent in execution at the object code level.

IcoSim’s® ability to execute object code in it’s virtual target environment ensures that the final software is tested

regardless of how it was created — whether by traditional methods or by the use of code generators based on

behavioral models. Simulation of peripheral systems, sensors, and vehicle dynamics ensures that realistic data is

always being sent to and received from the SW under test as opposed to traditional methods of creating test pattern
sequences for SW stimulation. This unique combination of capabilities provides for unprecedented levels of SW
V&YV confidence, and allows for the simulation of external system, sensor, and actuator faults as well as factors

external to the aircraft, for the express purpose of validating and verifying the response of the total system.

Simulation of high-level systems has been shown to reduce development costs and improve the testing, reliability
and quality of embedded software. When software can be run in the simulated target HW environment for which it

was developed and further, in the simulated aircraft itself, large gains in productivity can be realized. For instance:

e Each programmer uses a copy of the entire simulated target environment during development thereby reducing

the dependency upon laboratory hardware resources.

e By facilitating concurrent design of hardware and software, the use of IcoSim® shortens project schedules and

reduces associated costs.

|
Triakis Doc No.: WP _020610c 14 4 September 2003

TRIAKIS CORPORATION

p 7 i
l’l’;{\.\“‘

TRIAKIS CORPORATION

e Since IcoSim® test scripts are based on a complete environment model, more realistic and thorough testing is
accomplished than can be achieved by traditional test methods. Applications developed with IcoSim® are tested

to a high degree of confidence reducing the need for repeated testing in expensive system integration facilities.

e Modeling of hardware failure modes is easily accommodated with IcoSim®, eliminating the need to build

custom hardware failure emulators.

e IcoSim’s® method of performing system tests, software verification tests, and module-level tests promotes high

levels of consistency and re-use across multiple versions and products.

e Automatic path coverage analysis can direct the development of additional module-level tests to exercise
untested paths, insuring complete code test coverage. Exercising untested paths is accomplished by

commanding external device models to force the application code down those paths.
e The simulator can be used to prototype new software features and enhancements

e The IcoSim® test environment is virtually immune to obsolescence issues that typify special hardware

equipment traditionally used for testing.

There is no better way to verify SW functionality and performance than to run it in the environment in which it was
designed to interact. However, assembling a real world avionics SIL is very expensive and creates a resource
bottleneck as programmers vie for testing time. Using an IcoSim® virtual world, however, every programmer has
access to a copy of the VSIL at his or her individual computer in which to develop & test his or her SW. To
enhance the use of the VSIL as a test vehicle, [coSim® comes with simulations of standard laboratory test equipment

such as oscilloscopes, signal generators, and the functional capability of microprocessor emulators.

The IcoSim® virtual world is hierarchical so objects at the lowest level of abstraction are interconnected to make
successively higher levels of functional objects until the required environment is complete. This modular approach

enables the highest possible levels of SW reuse for subsequent development projects.
Creating your host embedded avionics SW development environment with IcoSim® following the Triakis ES model
ensures that:

1. Maximum quality is achieved by testing in the VSIL environment throughout the entire product development

and service life cycle.

2. Lowest overall development and support costs are realized through unprecedented fault detection coverage at

the least costly phase of the development process.

|
Triakis Doc No.: WP _020610c 15 4 September 2003

APPENDIX

The figure at the right is a screen shot of a simulated
747 DC Standby-Power Flight Deck Electrical System
Control Panel. This panel is simulated at the ES-level
and functions in its virtual aircraft environment as it
would in the real aircraft environment. When the
simulation is running, the knobs and pushbuttons are
operated with the mouse. The switches initiate their
corresponding actions and the lamps illuminate to

reflect their corresponding system status.

The figure below is a screen shot of another module that
runs within the same simulation that dynamically
represents, in schematic form, the DC standby-power
system circuitry onboard the 747 aircraft. While the
simulation is running, the dotted lines representing the
main power buses indicate both the magnitude and

direction of current flow in an animated fashion. Relay

Dynamic System-Level Simulation of Boeing 747

T
TRIAKIS CORPORATION

Simulated Boeing 747 DC Standby-Power
Cockpit Control Panel (courtesy of ELDEC Corp.)

Cockpit Panel
Trace Debug

EEIENTCTEET

EE EEE
-— ==

= = - B E
===

contacts and circuit breaker states

(=1 £

DC Standby-Power Control (courtesy of ELDEC Corp.) can be observed dynamically
T [/ responding to manual input from the
Ttzce Debus
EEEL T control panel, or automatic input
TRU 1 TRU 2 TRU 3 TRU 4 from the DC Standby—Power
5 Control Computer (DC SPCC).
T e e e 5 module which has been simulated at
= ., : : 5 % ,. the ES-level, as well as the APU,
% % % % g % g % @@) ok g g Integrated Drive/Generators (IDGs),
g 0 m a
5 WW : : etc. that have been simulated with
e ann oo non ShonnnoannE = e enough fidelity to realistically
Sushinics oty el ot represent the interface signals and
- & : timing with which this system
e - el % M
8 E interacts.
SEEE
M e
Triakis Doc No.: WP _020610c 16 4 September 2003

TRIAKIS CORPORATION

The screenshot below depicts a simulation of the space shuttle robotic arm currently in development by Triakis to

enhance IcoSim® with Newtonian dynamics capability. The CPU chosen for use in this simulation is the MPC 555

PowerPC™,

' MPC555 Ben]|

Fle Canlral Help

Space Shuttle Robotic Arm Control Simulator

U
=]

Trace [Debug

.

A]

= MPCESS Bench

Cpu-Lagic Supply

Terminal

Triakis Icosahedion
=] MPCEGE SEC

Rt

Ciystal
[} NYRAM
=1 {0] MPC5SS Wwhapper
MPCHSE
MODCKT_3 Jum
Config Jumper
Feference
Signal Generatal

© [The World

Trave Debug

SEIEEICIEE

s3] 7] 2) EmE 2l

Space Shuttle
Tiace Dsbug

=@zl

Motor 3D

Trare Mehin.

8 [

i I\:_EES.‘"JS?E"”"“ F MPCESS

N T";T;zsé (LT

? Epeed 1 [uto 8pd. Fx

Com IET d o o= 8 MPC555 SBC O]
T e | —

Trace Debug

=lelz| BEDE

[Pinus Valts: -12 6000

| m m m

E[EmE|

' Ll| = =

=|E| =&

oia 00002340
&r 80000000
fpser Q0000000
msr 00000000
wer 00000000
Ir 00002330
ctr 00000000

sir 0000ADC2
eie DOOOOOOD
2id DO0OOOOD
nrf 00000000
prg 00000000
sprg 00000000
prg2 00000000
sprg3 00000000
P 00000000
1pecr O000D000

gprls] 00801FAS
gpil4] 00000002
gprls] 00000004
gpilf] 00S025FB
gpr[7] 00801798
gpilE] 00000001
gpil] 00801FER
gprl10] 00000000
gpi[11] 0000005S
gprl12] 00802306
gpil13] 00200000
gprl14] 00000000
gprl16] 00000000

¥
Start_ nf “;
SloE L

i

[Updsta] ! [pests] [Eovp ey 0.1
[T I | 7 [p— T— —
[Fowe: O TRUE ERFAZ a0 | 4. cooooooo omil1] 00AD2213 5

U] | — 10 0D00ZEAD aprf2] 00800020 E\%ﬁ:‘

B,

. . g 44 .) e
| 13JC A TrskishCustomersh... |

5] inbo -Microsoft ook | &t /s tikis com._ | @8 MPCESEBench - Micios. | Bl MPCSSS Berch

gt

Sston]|| & 1574 B »

|
Triakis Doc No.: WP _020610c 17 4 September 2003

I
),

d TRIAKIS CORPORATION

This is a screenshot from Triakis’ motor speed controller tutorial simulation. This simulation exemplifies how a DE

has been developed from an ES, and how the ES and DE can be used interchangeably in the simulation.

Tutorial Application DC Motor Controller with Memory Location Scope

C Motor Controller

Cani Usis E081 o=

Fi=' Confiol Help

DL Motor Controller

sl 7 2l 7 EmE 2|

REIEINEIN

“ @ =i > ”H 3] webFileTien

E’ The World

Motor Graphic At Braak
Motar Graphic At Break

Mater Graphic. 4 SRS
Motor Graphic A ldleee SOEENT

Trace Dsbug

& 18051 Card _[olx]

DC Maotor = 0] =]

Tises Dabug

E|al|=| =

| Elae] B iE
F 18022 Microcontralle r_ Eeprom

(Ol

Moter Graphic 4| =| & .I.I.II

Motor Graphic &

T [tagercoswon
£

000010 B3 CA OC 72 40 72 40 ZB 00 00 00 00 00 00 00 00 Real Loc Man

000030 5D D4 OB FC 96 FS 45 36 13 0D & OR 10 IE AR 32 [Enable Matkers:
000040 20 S8 50 EE 40 79 36 FD 12 49 32 ¥ 9K T 49 I

d0es 0 4 24 52 44 60 o8 00 53 G 0 32 3 L 22
e ez noneunDae s o | ||

513836360ad mov Q¥ putaddr8 | aoo00. 2¢ 30 7E C5 99 D5 B9 30 B2 Eh C3 CC 53 BF 6706

51.383537 b0 mov(Q# putaddrs || | popnsa
61383630003 mov (# put addr a,

61383641 6b6 moy QO __out addo b immod 1

£1.383593cb0 mov UL U T

61.2836460he mow . [jaee Liebug

—

Current
0813742

Radial Velocity
9713360

Fv Motor Current Scope

Fw Motor Graphic

anle
§ 1824205
Motor Graphic

61383547 obid mov,
1353598 cbs inc d | = BEE
61.383550cbf mows

61383552000 mow
51383553001 inc 4
B1.383555¢02 mow:
61383557 062 mow
51383558004 inc 4
61.383560c05 mow:
61383562008 mow
51389563647 lcall
B61.383565ffe lladd
51383565 e mov 2
513895601 add a,
61.383567 1001 mo

Start 1 [+ Littie Endian

Lo (dec) -127 (dec)
[I

CEEmE

High (dec): 127 (dec]
L Jlusdsts]

Locchesx: 00000005

[Ewptom): 00008
+ 5 Bit Signed .
L I[Hedste]

i 16 Bit Signed

Fd Motor Cunrent §cope

2% 1 e
13835681003 adde a0 get al, putad, get addra,
61.3835701005 mow ha put 0,

513835711006 mow 203 putan,

13835721007 adde a0 get al, putad, get addra,
61.3835731009 mow 13,3 puti30,

513835741008 mow 212 putad,

1.383575100b adde a0 getal, putad, get addra,
61.383576100d mow 12,3 puti20,

13835771008 ret

61.383570c0a mow a5 put a &1,

Tiace Debug

=lg|e| BE@E

| &1sitconvalley.com .| & inboy - Missosct . | @ Tutoril - Microsot..| Bl DE Motor Contioler |[[E] The Warld A @en el B2an

(Oftzet Chi: 3.0000 Enable Trigger TRUE
[E— |

[Dffset Ch2: 1.0000 [Trigger Chan 1-4: 1
[Jiopdstel [|[updste]

[swp csfomy 0.0005 [Crtset Cha: -1.0000 [Trigger Voltage

[Gain Wicm): 4.0000 [Dffset Cha: -2.0000 ¥ Positive Slope
[J(oedste] [|[udsts]

Triakis Doc No.:

WP_020610c

18

4 September 2003

| TRIAKIS CORPORATION

This screen shot shows a hierarchical subset of the Boeing 757-300 from the Airplane level down to the CPU level.

The PowerPC™ registers are shown along with an oscilloscope monitor displaying periodic interrupt signals.

Triakis Custom Boeing 757 Sensing System Simulator (courtesy of ELDEC Corporation)
:

3 —
¥ 'Basing 5300 .

Filz- Contral Help

sl 7 2l] 8]

O The World =]

5l @ Boeing 757-300

Tz

(o]

Eldec Pseu _ O] x|

B HEE
L& ® L anding Gear #1 Card _ |0} x|
O Boeing 757-300 & e = - ! ;
Cargo Door 8 Microcontiofler Core - O] x|
o T
Eidec Pseu Cpu Core I =] Y 1
Landing Gear #1 Card : =
PS5 Dsp Prox — [Toe]
[E) Input Conditioner :l
Output Conditioner
Power Supply l:l =
Reset Control = Contents =
FM$ Cantrel I |
Bi5422 Comm Interface 3F9500 O 70 B0 AE 53 E& 65 F§ 7 2R 7B 5B B3 75 |
B LED Indicator IFSEL0 15 &0 4D EE 59 0F S0 63 CE 75 EF 05 45 F1
2 3FS520 95 60 3F F2 OS5 35 10 FO 41 9D 5C EY (B F2 |
I b Diserete [Pt 3F9530 EF AE 3D RS 95 EF 57 05 BS 27 35 F4 5E 15
B -
) .’i:«;aluglnpuﬁ o MPC55 3F9540 02 P4 42 15 G2 F2 G5 47 3¢ E3 62 60 60 37
Sl Ciocottoler Core B — SF3550 OF 29 &6 90 45 3A 79 3A 0D LE E2 A1 74 75]
Rtk = QSHCH 3FS560 DA C &3 C7 53 05 B1 24 D2 64 OB 6C 76 20
M Banksd FROH De PO Cou _3FSE70_3E SA F0 GE OB CF FE 43 5¢ 04 TE BE 95 Fa
I Crystal e 5 D =1oT
Clock Divider N = El I . .l- Trace . Debug
5P C5 Decoder 1 = F =T =
NYRAM ': F [P 188 BB -
o B vecsss | : ;
2 e s FEe Er P worew |
| ECls2 [Update |
Fhnrum F : l:l - daiar GODCO0 sprg3 DOOCOD 2pC] 15874 gpql0] OCOIAO gp20] COZEE gp 0] BOCOCE
PPC Cpu . - dar 000000 per 000000 3pfl] S70F0C gpfll] $70F00 gp21] 800280 gpq31] OXCOCO
DMPLU r ' Terminal | ———] 0 QLSE7A Tpecr COUO00 spi2] GZAREC spil2] 305000 g pr22] B00Z2Z0
o MPL Radi sl QOBOOE 2pf3] ON0001 gpil3] OZACOR gpi23] SCOLER
FiM A | . m eie 0OCCO0 gpfd] C22374 gpld] BCORSE gp2d] B0OLlEE
e Lang R . o0 cis GO0S00 «id 000000 3pds] 000000 zpilS] SOORLE g pr25] CO150
et | ™ ik <1 20000000 nri DOOK0D apf8] G003 gprflE] BOOTDE g p28] 2ODLCE
RAM Ctrl : qd“_("_‘ oo iR Tpaer OA000 sprg0 HODOO0 7] C2BC8E gp{l7] SOO7SR g pi[27] 200OCE
e Flash & ent "‘P"". :::: tastian; 0008 mzr GO0000 sprgl 0OOC0O apf%] B14058 gpile] 500318 g pe[28] SCO0RE
' Flazh B ERR | | Pama= 1 20000000 3prEZ CODKCD spfd] 814568 gpdl9] SOOZDE gp29] 20OO04T
Flash Ctd ol | il It 015894
D'I Eﬁ;UE Cpu Care At Break i
. Cpu Care At Break
Prj — : E- 8 MIDS T _.f:l
4 |
2 i

Triakis Doc No.: WP _020610c

19

4 September 2003

TRIAKIS CORPORATION

This is a screen shot displaying some diagnostic views of the ELDEC Corp. 757-300 PSEU simulator. This
simulator is running SW object code implementing an adaptive control filter algorithm on a simulation of the highly
complex Motorola DSP56302 digital signal processor. This simulator simultaneously runs object code on another

simulated microprocessor that serves as the primary controller for the PSEU.

Simulated Motorola DSP56302 running adaptive control filter algorithm SW
(courtesy of ELDEC Corp.)

—y : S — - -
@& o COEEL R 3
l“ i The Worl = G = Location Monitor == o B B

g Tiace Debug Liaoe Debln Trace Debug

. Td|Te[Ts|s2 Tl:l EAETEE Ta|e|Ts|sz[7e| i 5| 51 e _Td|T'ﬁ.|T5|3'ZITE| IEIETE

[[oc thewi: 17 (hery = -
omsio Tl
T —— s S]
[Ewpes/ cmiy: ©.000100° TR =
= , e) —
|‘-°2m" =D S [Registers |

10 FESE0 PC 000070 R4 000013
[Em they O (her}]

= KL FFFFFE SR OOR3AR RS FE5A38
i Dy Dby |
YO BF3ESZ

TMR 100303 RS 000034

anfira); 0.000000 ot Fremvity Reg © V1 000017 La 000875 RT 601538
[g 5 cher 20 hoERAL LE congse WO 000014

21 000004 5P 000000 N1 DZCES
42 000000 RO 00000C MZ 000001

[peed Cantmal] [etup Mumber: d¢decy |

| sk Opdaie]

[]
: —

L =

|| 80 000000 13 coo01E
i D 4 i z 81 000000 000030

3 == 82 000000 s 0000LF
= Boeing 757 X 0 = T

té [
U & B757 Preu =10 =] e w S, s | F Baat RO ’7 D5P5RI0 R L
T E = Large Card - |0O] x| 5 v =Ry

e » 1 il }
I Intemnal X RAM =10]x]

Trace Debug

Tiaca Debug

- 5| Tave|vs|se|Te| E|] 0| B
TdTelTs SzTc-| l|lll e A L g

act 551 Data Out Right Valtage In) v Lacatian Manitar
SCObE (herh 1287832 T »
. EiigiaciEoape 000000 000000 COBEF S DIDS7A F4G785 FESETO DBSFLA 000017 FOIISE =
- 3 [Enable Warkers: FALSE

OCCOOR 110374 0OCORH COBESA FFFFFS FEAFAD COOS FODESE OU2OOF
MELK Freq [Left Difset Carrectian 'y
18000000 (decy 000000 000010 0OGO14 143FA7 C7AFSD 238840 COOCOL FFFFFS DOCOIF 0GOOL7

v

O0COIE 1842Cf 247550 00001 FO3ISE 203IF7E GOO0L7 FSE7AR COOOOD

v - Q0CoZ0 101FB5 000000 O3ZL1FE FFFFFD 0310FH 000001 000034 FESA3H m
LRELE [Right Dffcet Camectian
FAL SE). 000000 s 000000

000148 OO04ET FFE223 1ECADT O00SIT FABZRF 0COGT0 DOODIC
0CCO30 EODESE FFFF33 FEAF4D FF1H49 EOMA] COOO14 COBZER GOCOFD

Tt val T OOCO3E OOOO00 COD01E CONOCO D000 GO1L00 CHO00C GOOCAF DOOCHN
Ft altoge In Fommm” 00040 000000 CONDD0 CEG0CE GE00CE COB000 CO000D ALTTAL ALTTAL
| OOODAE 37E200 000000 OOBFE] AASIAA Aa55AA COOO00 COO20S 00050

00050 KOO0 GOA000 BHAO0A HADNCH KODOGE GOG0C0 DOCABL FFF4EL
0CCOSE EADLTO FSLESE OAB71A 19ARSE ZE204 ZA7E0Z 2OA1EC 228740
O0CORO 15FES0 01448 F57RE EAST?0 DELOFA DSR1FD DBSELZ DOSOAT
OCCORE EADL7O FSLESE OAB71A 1SARSE 2AE204 ZA7EDZ 2BA1EC 228740
000070 15FES0 03448 FSTRE EAST?0 DBLOFA DS1FD DASELZ DOSOAT —'b

| Td|Te|Ts|s2|Tc| | S0| 58| Be

[Er feremy: B.oo0s1E N |
[| [Cupdste] | T |
[| Updste | | | Update |
[—
=

B Lot I : : f

o SN A
Messag || = The world S @k 1n10ps

o

J a‘wﬂled.News— | @ C:ATriakiz\Sim. I [Inbos - Microso, I & Dsp757 - Micio. l @\N\AES Techn. | 4| Slashdat: New l —|Debug

Start H ﬁl‘_;;!m » >

Triakis Doc No.: WP _020610c 20 4 September 2003

